生命エネルギーモデルを用いた死亡率予測

南優希

早稲田大学大学院基幹理工学研究科 数学応用数理専攻修士 1 年

清水 泰隆 (早稲田大学) との共同研究

2019 年 10 月 26 日 研究集会「Demographic Change」@早稲田大学

目次

- 生命エネルギーモデルとは
- 非斉次的拡散による SEM
- モデル設定とパラメータ推定
- 死亡率予測
- まとめと今後の課題

モデル考案の背景

現在,死亡率予測モデルとしては,Lee-Carter モデルが国際的にも標準的な方法とされている.

Lee-Carter モデル (Lee and Carter, [1])

年齢 x=1,...,K,時刻 t=1,...,T としたときの中央死亡率 $m_{x,t}$ に対して

$$\log m_{x,t} = \alpha_x + \beta_x \kappa_t + \epsilon_{x,t}.$$

 $\alpha_x, \beta_x, \kappa_t$:パラメータ, $\epsilon_{x,t}$:誤差項

Lee-Carter モデルの問題点

- パラメータの解釈がしにくい
- 推定したパラメータが一致性を満たさない (Leng and Peng, [2])
- 生まれ年毎の累積死亡率の追跡が面倒である

生命エネルギーモデル (Survival Energy Model, SEM)

生命エネルギーモデル (伊藤,清水[3])

人間に生命エネルギー (Survival Energy, SE) なるものが存在すると仮定し,誕生から死亡までの SE の推移を,コホート c 毎に確率過程 $\mathbf{X}^{\mathbf{c}}=(X_t^c)_{t\geq 0}$ によってモデリングする.

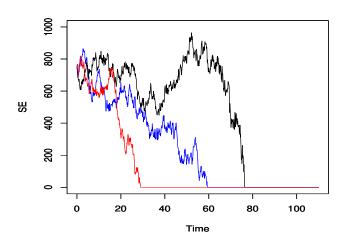
- コホート c は生まれ年を意味する
- 初期エネルギー $X_0^c = x_c$ はコホートごとに等しい

死亡時刻と死亡率関数

死亡時刻: $\tau^c := \inf\{t > 0: X_t^c < 0\}$

死亡率関数: $q_c(t) := \mathbb{P}(\tau^c \leq t), \quad t > 0$

生命エネルギーのイメージ図



Toy Model

ドリフト付きブラウン運動による SEM

$$X_t^c := x_c + \mu_c t + \sigma_c W_t$$

- x_c > 0:初期エネルギー
- W_t:標準ブラウン運動

$$q_c(t) = 1 - \Phi\left(\frac{x_c + \mu_c t}{\sigma_c \sqrt{t}}\right) + e^{-\frac{2\mu_c x_c}{\sigma_c^2}} \Phi\left(\frac{-x_c + \mu_c t}{\sigma_c \sqrt{t}}\right), \quad t > 0$$

Φ:標準正規分布の分布関数

平均寿命:
$$\mathbb{E}[\tau^c] = \int_0^\infty [1 - q_c(t)] dt = \begin{cases} \frac{x_c}{|\mu_c|} & (\mu_c < 0) \\ \infty & (\mu_c \ge 0) \end{cases}$$

終身保険: $\overline{A}_{\mathsf{x}} = \int_0^\infty e^{-\delta t} \frac{q_c'(t)}{1 - q_c(t)} dt$

非斉次的拡散過程による SEM

非斉次的拡散過程 SEM

時刻 $t \geq 0$ における生命エネルギー $\mathbf{X}(\theta_{\mathbf{c}}) = (X_t^c)_{t \geq 0}$ が、

$$X_t^c := x_c + \int_0^t U(s, \mu_c) ds + \int_0^t V(s, \sigma_c) dW_s$$

という確率微分方程式に従う.

- $U(s, \mu_c), V(s, \sigma_c) : \mathbb{R}_+ \times \mathbb{R} \to \mathbb{R}$
- $\theta_c = (x_c, \mu_c, \sigma_c)$

非斉次的拡散過程 SEM における死亡率関数

定理 1 (Molini et al., [4])

$$M(t,\mu_c)=\int_0^t U(s,\mu_c)ds, \quad S(t,\sigma_c)=rac{1}{2}\int_0^t V^2(s,\sigma_c)ds$$
 に対して $rac{M(t,\mu_c)}{S(t,\sigma_c)}\equiv \kappa_c, \quad orall t\geq 0$

の関係を仮定すると,

$$q(t, \theta_c) := \mathbb{P}(\tau^c \le t | \theta_c)$$

$$= 1 - \Phi\left(\frac{x_c + M(t, \mu_c)}{\sqrt{2S(t, \sigma_c)}}\right) + \exp(-\kappa_c x_c) \Phi\left(\frac{-x_c + M(t, \mu_c)}{\sqrt{2S(t, \sigma_c)}}\right)$$

パラメトリック族: $\mathcal{P}_{\Theta} = \{q(t,\theta) | \theta \in \Theta\}, \ \Theta \subset \mathbb{R}^m$

条件付き経験累積死亡率

Human Motality Database [5] から男女合計の生命表を入手 \rightarrow コホート c 毎の死亡率データになるように加工

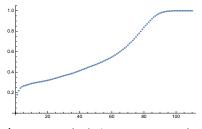


Figure: スウェーデンの 1830 年生まれコホートの経験累積死亡率推移

- 幼少期,青年期における死亡率は不安定
- 高齢期にさしかかると死亡率が急激に増加

非斉次的拡散 SEM のパラメトリックモデル

T>S>0として、S歳まで生存した部分集団の SE 過程を考え、T歳でパラメータが変化するとし、時間依存ドリフト係数として次の 3 つのケースを考える.

- $U(t,\mu_c) = \alpha_c$
- $U(t, \mu_c) = \alpha_c + \beta_c (t T)^{\gamma_c} \mathbb{1}_{\{t > T\}}$
- $U(t, \mu_c) = \alpha_c + \beta_c \exp(\gamma_c(t T)) \mathbb{1}_{\{t > T\}}$

$$\alpha_c < 0, \beta_c < 0, \gamma_c > 0$$
 とする.

時間依存拡散係数は、 $\kappa_c < 0$ として

$$V^2(t,\sigma_c) = \frac{2}{\kappa_c}U(t,\mu_c), \quad \forall t \geq 0.$$

パラメータの推定

- 真の条件付死亡率: $q_c(t|S) := \mathbb{P}(au^c \leq t | au^c > S)$
- 経験条件付死亡率: $\widehat{q_c}(t|S) := \frac{1}{n} \sum_{i=1}^n \mathbb{1}_{\{S < \tau_i^c \le t\}} / \frac{1}{n} \sum_{i=1}^n \mathbb{1}_{\{\tau_i^c > S\}}$

$$\sup_{t>0} |\widehat{q_c}(t|S) - q_c(t|S)| \xrightarrow{p} 0, \quad n \to \infty \quad (Glivenko - Cantelli)$$

● パラメトリック族:

$$\mathcal{P}_{\Theta} = \{q(t,\theta)|\theta = (x,\alpha,\beta,\gamma,\kappa) \in \Theta\}, \ \Theta \subset \mathbb{R}^5$$
: 有界開集合

● 真値の存在を仮定:

$$\exists \theta_0 \in \Theta \quad s.t. \quad q(t, \theta_0) = q_c(t), \quad a.e.$$

パラメータの推定

最小二乗推定量(LSE)

 $0 < t_0 < t_1 < ... < t_d$ に対して,

$$\widehat{ heta_n} := arg \min_{ heta \in \overline{\Theta}} \sum_{i=1}^d |q(t_i, heta|S) - \widehat{q_c}(t_i|S)|^2$$

ただし、
$$q(t, \theta|S) := \frac{q(t, \theta) - q(S, \theta)}{1 - q(S, \theta)}$$

- 変化点 T 以前で x_c , α_c , κ_c を, T 以降で β_c , γ_c を推定
- x_c , α_c , κ_c は識別性がないため, x_c の値を固定

LSEの一致性

定理2

 $q(t,\cdot)$ は各 t に対して $C^1(\Theta)$ 級であるとする. さらに、次の識別性条件を仮定する:

$$q(t_i, \theta|S) = q(t_i, \theta_0|S)$$
 for $i = 1, 2, ..., d \Rightarrow \theta = \theta_0$.

このとき, LSE $\widehat{\theta_n}$ は弱一致性を持つ:

$$\widehat{\theta_n} \stackrel{p}{\longrightarrow} \theta_0, \quad n \to \infty.$$

LSEの漸近正規性

定理3

 $q(t,\cdot)$ は各 t に対して $C^2(\Theta)$ 級であり、識別性があるとする. さらに、 Θ に凸性を仮定し、 $m=dim(\Theta)$ とする. このとき、

$$\sqrt{n}(\widehat{\theta_n} - \theta_0) \stackrel{d}{\longrightarrow} R_d^{-1} Q_d \cdot N_d(0, \Sigma), \quad n \to \infty$$

が成り立つ. ただし,

$$Q_d = (\partial_{\theta} q(t_1, \theta|S), ..., \partial_{\theta} q(t_d, \theta|S)) \in \mathbb{R}^m \otimes \mathbb{R}^d,$$

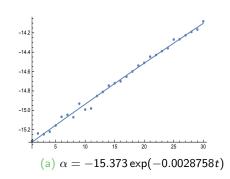
$$R_d = \left(\sum_{i=1}^N \partial_{\theta_i} \partial_{\theta_j} q(t_i, \theta|S)\right)_{1 \leq i,j \leq m} \in \mathbb{R}^m \otimes \mathbb{R}^m,$$

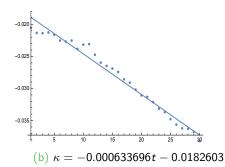
$$\Sigma = (p_c(t_i \wedge t_j|S) - p_c(t_i|S)p_c(t_j|S))_{1 \leq i,j \leq d}, \quad p_c(\cdot) := 1 - q_c(\cdot).$$

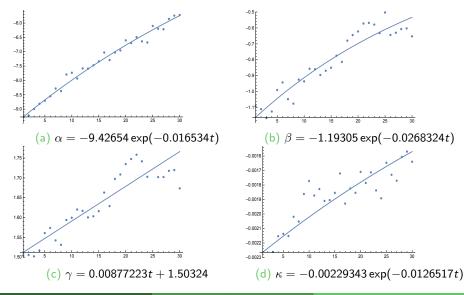
オランダにおける死亡率予測

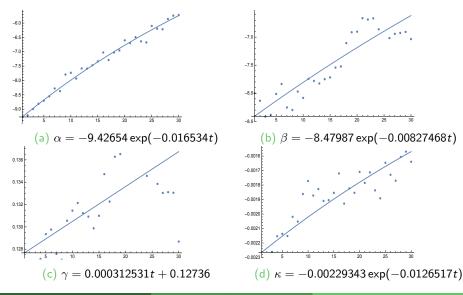
1841 年生まれから 1870 年生まれの死亡率データを用いて, 1880 年生まれ, 1890 年生まれ, 1900 年生まれの死亡率予測を行った.

- 30年分の死亡率データのパラメータ推定
 - スタート年齢は S = 20 とし、変化点は T = 60 とする
 - 初期エネルギーは x_c = 1000 とする
 - 制約条件として, $\alpha_c < 0$, $\beta_c < 0$, $\gamma_c > 0$, $\kappa_c < 0$ とする
- ② 将来死亡率関数のパラメータ予測
 - (非)線形回帰によって予測









推定死亡率関数と実データとの比較

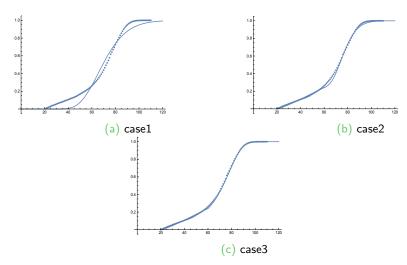


Figure: 1870 年生まれコホートの推定死亡率関数 (実線) と実データ (点線)

推定死亡率関数と実データとの比較

Table: 推定死亡率関数と実データとの誤差の二乗和の平均

ケース 1	ケース 2	ケース 3
0.427944	0.0220319	0.00671647

死亡率予測の結果:10年後

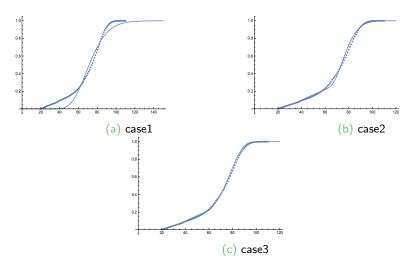


Figure: 1880 年生まれコホートの予測死亡率関数 (実線) と実データ (点線)

死亡率予測の結果:20年後

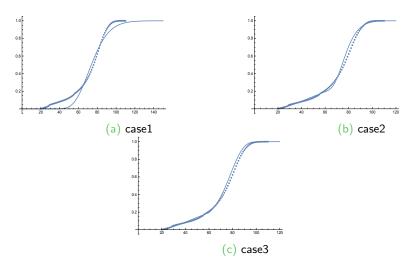


Figure: 1890 年生まれコホートの予測死亡率関数 (実線) と実データ (点線)

死亡率予測の結果:30年後



Figure: 1900 年生まれコホートの予測死亡率関数 (実線) と実データ (点線)

死亡率予測の結果

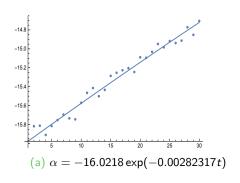
Table: 予測死亡率関数と実データとの誤差の二乗和

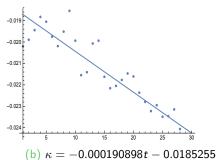
	ケース 1	ケース 2	ケース 3
10 年後	0.330259	0.0433915	0.0201326
20 年後	0.329853	0.0822591	0.0653867
30 年後	0.256442	0.135588	0.125765

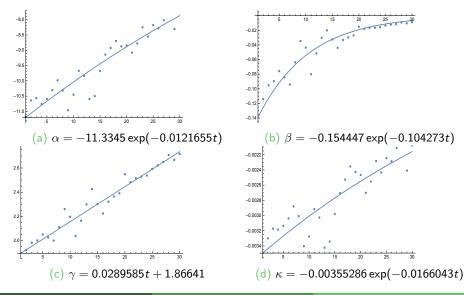
スウェーデンにおける死亡率予測

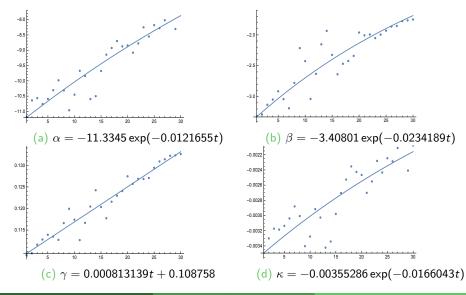
1801 年生まれから 1830 年生まれの死亡率データを用いて, 1840 年生まれ, 1850 年生まれ, …, 1900 年生まれの死亡率予測を行った.

- 30年分の死亡率データのパラメータ推定
 - スタート年齢は S = 20 とし、変化点は T = 50 とする
 - 初期エネルギーは x_c = 1000 とする
 - 制約条件として, $\alpha_c < 0$, $\beta_c < 0$, $\gamma_c > 0$, $\kappa_c < 0$ とする
- ② 将来死亡率関数のパラメータ予測
 - (非)線形回帰によって予測









推定死亡率関数と実データとの比較



Figure: 1830 年生まれコホートの推定死亡率関数 (実線) と実データ (点線)

推定死亡率関数と実データとの比較

Table: 推定死亡率関数と実データとの誤差の二乗和の平均

ケース 1	ケース 2	ケース 3
0.347101	0.0103527	0.000823361

死亡率予測の結果:10年後

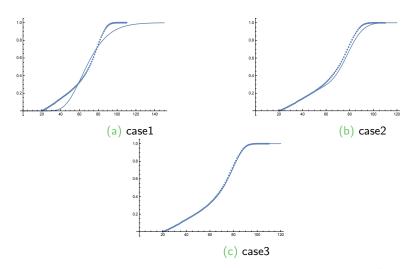


Figure: 1840 年生まれコホートの予測死亡率関数 (実線) と実データ (点線)

死亡率予測の結果:30年後

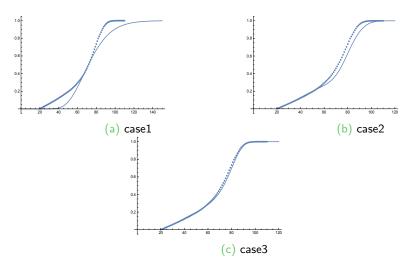


Figure: 1890 年生まれコホートの予測死亡率関数 (実線) と実データ (点線)

死亡率予測の結果:50年後

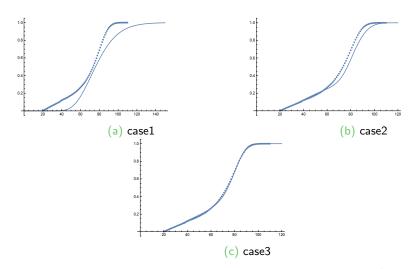


Figure: 1900 年生まれコホートの予測死亡率関数 (実線) と実データ (点線)

死亡率予測の結果:70年後

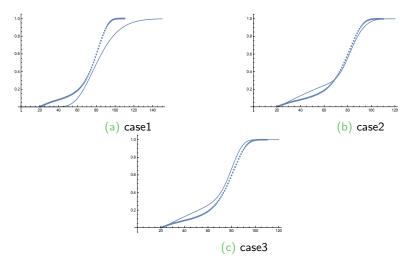


Figure: 1900 年生まれコホートの予測死亡率関数 (実線) と実データ (点線)

死亡率予測の結果

Table: 予測死亡率関数と実データとの誤差の二乗和

	ケース 1	ケース 2	ケース 3
10 年後	0.457803	0.101353	0.0064886
30 年後	0.670725	0.257575	0.0257175
50 年後	1.0998	0.254276	0.00915939
70 年後	1.1654	0.143401	0.239306

まとめと今後の課題

- SEM は LCM に比べ以下の点で優れている
 - パラメータの解釈が容易である
 - コホート毎の累積死亡率を追いやすい
 - 推定したパラメータに一致性や漸近正規性がある
- データが十分にあれば、非常に高い精度での死亡率予測が可能
- モデルの拡張性が高い
- データが少ない国での死亡率予測
- 男女別の死亡率予測
- コホートや変化点を取り入れた死亡率モデルの先行研究との比較

参考文献

- Lee, R. D. and Carter, L. (1992). Modeling and Forecasting U.S.Mortality. *Journal of the American Statistical Association*, Vol.87, No.419, 659-675.
- [2] Leng, X and Peng, L. (2016). Inference pitfalls in Lee-Carter model for forecasting mortality. *Insurance: Mathematics and Economics*, **70**, 58-65.
- [3] 伊藤龍之介,清水泰隆. (2019). 生命エネルギー仮説に基づく構造アプローチとコホート別死亡率推定. JARIP 会報 大会プロシーディングス特集号, Vol.6, 17-30, 2019.3.
- [4] Molini, A.; Talkner, P.; Katul, G. G. and Porporato, A. (2011). First passage time statistics of Brownian motion with purely time dependent drift and diffusion. Physica A 390 1841-1852.
- [5] Human Mortality Database: https://www.mortality.org/